Bias-reduced Extreme Quantile Estimators of Weibull Tail-distributions
نویسندگان
چکیده
In this paper, we consider the problem of estimating an extreme quantile of a Weibull tail-distribution. The new extreme quantile estimator has a reduced bias compared to the more classical ones proposed in the literature. It is based on an exponential regression model that was introduced in Diebolt et al. (2008). The asymptotic normality of the extreme quantile estimator is established. We also introduce an adaptive selection procedure to determine the number of upper order statistics to be used. A simulation study as well as an application to a real data set are provided in order to prove the efficiency of the above mentioned methods.
منابع مشابه
Pitfalls in Using Weibull Tailed Distributions
By assuming that the underlying distribution belongs to the domain of attraction of an extreme value distribution, one can extrapolate the data to a far tail region so that a rare event can be predicted. However, when the distribution is in the domain of attraction of a Gumbel distribution, the extrapolation is quite limited generally in comparison with a heavy tailed distribution. In view of t...
متن کاملWeibull tail-distributions revisited: a new look at some tail estimators
In this paper, we propose to include Weibull tail-distributions in a more general family of distributions. In particular, the considered model also encompasses the whole Fréchet maximum domain of attraction as well as log-Weibull tail-distributions. The asymptotic normality of some tail estimators based on the log-spacings between the largest order statistics is established in a unified way wit...
متن کاملEstimation of extreme quantiles from heavy and light tailed distributions
In [18], a new family of distributions is introduced, depending on two parameters τ and θ, which encompasses Pareto-type distributions as well as Weibull tail-distributions. Estimators for θ and extreme quantiles are also proposed, but they both depend on the unknown parameter τ , making them useless in practical situations. In this paper, we propose an estimator of τ which is independent of θ....
متن کاملThe Second-order Bias and MSE of Quantile Estimators
The finite sample theory using higher order asymptotics provides better approximations of the bias and mean squared error (MSE) for a class of estimators. However, no finite sample theory result is available for the quantile regression and the literature on the quantile regression has been entirely on the first-order asymptotic theory. This paper develops new analytical results on the second-or...
متن کاملOptimally Combined Estimation for Tail Quantile Regression
Quantile regression offers a convenient tool to access the relationship between a response and covariates in a comprehensive way and it is appealing especially in applications where interests are on the tails of the response distribution. However, due to data sparsity, the finite sample estimation at tail quantiles often suffers from high variability. To improve the tail estimation efficiency, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013